3.6.21 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [521]

Optimal. Leaf size=181 \[ \frac {(3 A-7 B+11 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A-9 B+13 C) \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A-3 B+7 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d} \]

[Out]

1/4*(3*A-7*B+11*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B+C)
*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)-1/3*(3*A-9*B+13*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)+1/6
*(3*A-3*B+7*C)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4169, 4095, 4086, 3880, 209} \begin {gather*} \frac {(3 A-7 B+11 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(3 A-3 B+7 C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{6 a^2 d}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {(3 A-9 B+13 C) \tan (c+d x)}{3 a d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((3*A - 7*B + 11*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) -
 ((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) - ((3*A - 9*B + 13*C)*Tan[c + d*x]
)/(3*a*d*Sqrt[a + a*Sec[c + d*x]]) + ((3*A - 3*B + 7*C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(6*a^2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4095

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)),
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec ^2(c+d x) \left (2 a (B-C)+\frac {1}{2} a (3 A-3 B+7 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A-3 B+7 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}+\frac {\int \frac {\sec (c+d x) \left (\frac {1}{4} a^2 (3 A-3 B+7 C)-\frac {1}{2} a^2 (3 A-9 B+13 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{3 a^3}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A-9 B+13 C) \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A-3 B+7 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}+\frac {(3 A-7 B+11 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A-9 B+13 C) \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A-3 B+7 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}-\frac {(3 A-7 B+11 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {(3 A-7 B+11 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A-9 B+13 C) \tan (c+d x)}{3 a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A-3 B+7 C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{6 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 25.36, size = 7119, normalized size = 39.33 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(866\) vs. \(2(158)=316\).
time = 0.18, size = 867, normalized size = 4.79

method result size
default \(\text {Expression too large to display}\) \(867\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24/d*(-1+cos(d*x+c))*(9*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2*sin(d*x+c)-21*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin
(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2*sin(d*x+c)+33*C*ln(-(-(-2*
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos
(d*x+c)^2*sin(d*x+c)+18*A*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d
*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-42*B*cos(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+66*C*cos(d*x+c)*ln(-(
-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2
)*sin(d*x+c)+9*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c
)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-21*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/si
n(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)+33*C*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(
d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*sin(d*x+c)-12*A*cos(d*x+c)^3+60*B*cos(d*
x+c)^3-76*C*cos(d*x+c)^3+12*A*cos(d*x+c)^2-12*B*cos(d*x+c)^2+28*C*cos(d*x+c)^2-48*B*cos(d*x+c)+64*C*cos(d*x+c)
-16*C)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)^3/cos(d*x+c)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 3.11, size = 483, normalized size = 2.67 \begin {gather*} \left [-\frac {3 \, \sqrt {2} {\left ({\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (3 \, A - 15 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} - 12 \, {\left (B - C\right )} \cos \left (d x + c\right ) - 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}, -\frac {3 \, \sqrt {2} {\left ({\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (3 \, A - 7 \, B + 11 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (3 \, A - 15 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} - 12 \, {\left (B - C\right )} \cos \left (d x + c\right ) - 4 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/24*(3*sqrt(2)*((3*A - 7*B + 11*C)*cos(d*x + c)^3 + 2*(3*A - 7*B + 11*C)*cos(d*x + c)^2 + (3*A - 7*B + 11*C
)*cos(d*x + c))*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x
+ c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((3*A - 15*B + 19
*C)*cos(d*x + c)^2 - 12*(B - C)*cos(d*x + c) - 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2
*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c)), -1/12*(3*sqrt(2)*((3*A - 7*B + 11*C)*cos(d*x
 + c)^3 + 2*(3*A - 7*B + 11*C)*cos(d*x + c)^2 + (3*A - 7*B + 11*C)*cos(d*x + c))*sqrt(a)*arctan(sqrt(2)*sqrt((
a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*((3*A - 15*B + 19*C)*cos(d*x + c)^2
 - 12*(B - C)*cos(d*x + c) - 4*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^3
+ 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.93, size = 294, normalized size = 1.62 \begin {gather*} \frac {\frac {{\left ({\left (\frac {3 \, {\left (\sqrt {2} A a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - \sqrt {2} B a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + \sqrt {2} C a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a} - \frac {2 \, {\left (3 \, \sqrt {2} A a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 15 \, \sqrt {2} B a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 23 \, \sqrt {2} C a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{a}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {3 \, {\left (\sqrt {2} A a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 9 \, \sqrt {2} B a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 9 \, \sqrt {2} C a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{a}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {3 \, {\left (3 \, \sqrt {2} A - 7 \, \sqrt {2} B + 11 \, \sqrt {2} C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/12*(((3*(sqrt(2)*A*a*sgn(cos(d*x + c)) - sqrt(2)*B*a*sgn(cos(d*x + c)) + sqrt(2)*C*a*sgn(cos(d*x + c)))*tan(
1/2*d*x + 1/2*c)^2/a - 2*(3*sqrt(2)*A*a*sgn(cos(d*x + c)) - 15*sqrt(2)*B*a*sgn(cos(d*x + c)) + 23*sqrt(2)*C*a*
sgn(cos(d*x + c)))/a)*tan(1/2*d*x + 1/2*c)^2 + 3*(sqrt(2)*A*a*sgn(cos(d*x + c)) - 9*sqrt(2)*B*a*sgn(cos(d*x +
c)) + 9*sqrt(2)*C*a*sgn(cos(d*x + c)))/a)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2
*d*x + 1/2*c)^2 + a)) - 3*(3*sqrt(2)*A - 7*sqrt(2)*B + 11*sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) +
sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________